domingo, 18 de junio de 2017

TABULACION DE PARABOLAS

Una parábola es la representación gráfica de una función cuadrática.
f(x) = ax² + bx +c

Representación gráfica de una parábola

Se puede representar una parábola a partir de estos puntos:

1. Vértice

Vértice
Por este punto pasa el eje de simetría de la parábola.
La ecuación del eje de simetría es:
eje

2. Puntos de corte con el eje OX.

En el eje de abscisas la segunda coordenada es cero, por lo que tendremos:
ax² + bx +c = 0
Resolviendo la ecuación podemos obtener:
Dos puntos de corte: (x1, 0) y (x2, 0) si b² - 4ac > 0
Un punto de corte: (x1, 0) si b² - 4ac = 0
Ningún punto de corte si b² - 4ac < 0

3. Punto de corte con el eje OY.

En el eje de ordenadas la primera coordenada es cero, por lo que tendremos:
f(0) = a· 0² + b· 0 +c = c        (0,c)

Representar la función f(x) = x² - 4x + 3

1. Vértice

x v = - (-4) / 2 = 2     y v = 2² - 4· 2 + 3 = -1       
 V(2, -1)

2. Puntos de corte con el eje OX.

x² - 4x + 3 = 0
ecuación       
(3, 0)      (1, 0)

3. Punto de corte con el eje OY.

(0, 3)
Gráfica

Traslaciones de parábolas

También podemos representar parábolas a partir de las traslaciones de la función: y = x².
xy = x²
-24
-11
00
11
24
función

1. Traslación vertical

y = x² + k
Si K > 0, y = x² se desplaza hacia arriba k unidades.
Si K < 0, y = x² se desplaza hacia abajo k unidades.
El vértice de la parábola es: (0, k).
El eje de simetría x = 0.
funciónfunción
y = x² +2 y = x² -2

2. Traslación horizontal

y = (x + h)²
Si h > 0, y = x² se desplaza hacia la izquierda h unidades.
Si h < 0, y = x² se desplaza hacia la derecha h unidades.
El vértice de la parábola es: (-h, 0).
El eje de simetría es x = -h.
funciónfunción
y = (x + 2)²y = (x - 2)²

3. Traslación oblicua

y = (x + h)² + k
El vértice de la parábola es: (-h, k).
El eje de simetría es x = -h.
funciónfunción
y = (x - 2)² + 2 y = (x + 2)² − 2

1 comentario: